Comparison of sEMG-Based Feature Extraction and Motion Classification Methods for Upper-Limb Movement
نویسندگان
چکیده
The surface electromyography (sEMG) technique is proposed for muscle activation detection and intuitive control of prostheses or robot arms. Motion recognition is widely used to map sEMG signals to the target motions. One of the main factors preventing the implementation of this kind of method for real-time applications is the unsatisfactory motion recognition rate and time consumption. The purpose of this paper is to compare eight combinations of four feature extraction methods (Root Mean Square (RMS), Detrended Fluctuation Analysis (DFA), Weight Peaks (WP), and Muscular Model (MM)) and two classifiers (Neural Networks (NN) and Support Vector Machine (SVM)), for the task of mapping sEMG signals to eight upper-limb motions, to find out the relation between these methods and propose a proper combination to solve this issue. Seven subjects participated in the experiment and six muscles of the upper-limb were selected to record sEMG signals. The experimental results showed that NN classifier obtained the highest recognition accuracy rate (88.7%) during the training process while SVM performed better in real-time experiments (85.9%). For time consumption, SVM took less time than NN during the training process but needed more time for real-time computation. Among the four feature extraction methods, WP had the highest recognition rate for the training process (97.7%) while MM performed the best during real-time tests (94.3%). The combination of MM and NN is recommended for strict real-time applications while a combination of MM and SVM will be more suitable when time consumption is not a key requirement.
منابع مشابه
Research on Lower Limb Motion Recognition Based on Fusion of sEMG and Accelerometer Signals
Since surface electromyograghic (sEMG) signals are non-invasive and capable of reflecting humans’ motion intention, they have been widely used for the motion recognition of upper limbs. However, limited research has been conducted for lower limbs, because the sEMGs of lower limbs are easily affected by body gravity and muscle jitter. In this paper, sEMG signals and accelerometer signals are acq...
متن کاملThe Research on Quantitative Identification of Upper Limb Motion Based on sEMG
Surface electromyography signal (sEMG) can reflect nerves and muscles’ motion to a certain degree and has great practical value in clinical medical as well as in the medical rehabilitation field, such as nerves and muscles disease diagnosis, muscles function evaluation and artificial limb control, which achieve certain development and is applied in the joint motion information identification. B...
متن کاملAnt colony optimization-based feature selection method for surface electromyography signals classification
This paper presented a new ant colony optimization (ACO) feature selection method to classify hand motion surface electromyography (sEMG) signals. The multiple channels of sEMG recordings make the dimensionality of sEMG feature grow dramatically. It is known that the informative feature subset with small size is a precondition for the accurate and computationally efficient classification strate...
متن کاملComparison of Parametric and Non-parametric EEG Feature Extraction Methods in Detection of Pediatric Migraine without Aura
Background: Migraine headache without aura is the most common type of migraine especially among pediatric patients. It has always been a great challenge of migraine diagnosis using quantitative electroencephalography measurements through feature classification. It has been proven that different feature extraction and classification methods vary in terms of performance regarding detection and di...
متن کاملGenerating the Visual Biofeedback Signals Applicable to Reduction of Wrist Spasticity: A Pilot Study on Stroke Patients
Introduction: Application of biofeedback techniques in rehabilitation has turned into an exciting research area during the recent decade. Providing an appropriate visual or auditory biofeedback signal is the most critical requirement of a biofeedback technique. In this regard, changes in Surface Electromyography (SEMG) signals during wrist movement can be used to generate an indictable visual b...
متن کامل